Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1356551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638323

RESUMO

The Lipomyces clade contains oleaginous yeast species with advantageous metabolic features for biochemical and biofuel production. Limited knowledge about the metabolic networks of the species and limited tools for genetic engineering have led to a relatively small amount of research on the microbes. Here, a genome-scale metabolic model (GSM) of Lipomyces starkeyi NRRL Y-11557 was built using orthologous protein mappings to model yeast species. Phenotypic growth assays were used to validate the GSM (66% accuracy) and indicated that NRRL Y-11557 utilized diverse carbohydrates but had more limited catabolism of organic acids. The final GSM contained 2,193 reactions, 1,909 metabolites, and 996 genes and was thus named iLst996. The model contained 96 of the annotated carbohydrate-active enzymes. iLst996 predicted a flux distribution in line with oleaginous yeast measurements and was utilized to predict theoretical lipid yields. Twenty-five other yeasts in the Lipomyces clade were then genome sequenced and annotated. Sixteen of the Lipomyces species had orthologs for more than 97% of the iLst996 genes, demonstrating the usefulness of iLst996 as a broad GSM for Lipomyces metabolism. Pathways that diverged from iLst996 mainly revolved around alternate carbon metabolism, with ortholog groups excluding NRRL Y-11557 annotated to be involved in transport, glycerolipid, and starch metabolism, among others. Overall, this study provides a useful modeling tool and data for analyzing and understanding Lipomyces species metabolism and will assist further engineering efforts in Lipomyces.

2.
AMB Express ; 14(1): 4, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180602

RESUMO

Classical fungal mutant strains obtained by mutagenesis have helped to elucidate fundamental metabolic pathways in the past. In the filamentous fungus Neurospora crassa, the gluc-1 strain was isolated long ago and characterized by its low level of ß-glucosidase activity, which is essential for the degradation of cellulose, the most abundant biopolymer on Earth and the main polymeric component of the plant cell wall. Based on genomic resequencing, we hypothesized that the causative mutation resides in the ß-glucosidase gene gh3-3 (bgl6, NCU08755). In this work, growth patterns, enzymatic activities and sugar utilization rates were analyzed in several mutant and overexpression strains related to gluc-1 and gh3-3. In addition, different mutants affected in the degradation and transport of cellobiose were analyzed. While overexpression of gh3-3 led to the recovery of ß-glucosidase activity in the gluc-1 mutant, as well as normal utilization of cellobiose, the full gene deletion strain Δgh3-3 was found to behave differently than gluc-1 with lower secreted ß-glucosidase activity, indicating a dominant role of the amino acid substitution in the point mutated gh3-3 gene of gluc-1. Our results furthermore confirm that GH3-3 is the major extracellular ß-glucosidase in N. crassa and demonstrate that the two cellodextrin transporters CDT-1 and CDT-2 are essential for growth on cellobiose when the three main N. crassa ß-glucosidases are absent. Overall, these findings provide valuable insight into the mechanisms of cellulose utilization in filamentous fungi, being an essential step in the efficient production of biorefinable sugars from agricultural and forestry plant biomass.

3.
J Learn Disabil ; : 222194231211948, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962154

RESUMO

More than two-thirds of middle school students do not read proficiently. Research has shown that targeted interventions using explicit instruction methods can improve reading outcomes for struggling readers. A central feature of explicit instruction is the systematic implementation of instructional interactions, but it is not clear what specific instructional interaction practices lead to stronger outcomes for middle school readers. This study used a regression discontinuity design to compare the frequency and impact of instructional interactions experienced by eighth-grade students who received a targeted reading intervention (n = 1,461) with those who did not (n = 4,292). Results indicated that students who received intervention experienced far more instructional interactions with their teachers than did students who did not. However, the association between rates of interaction and student need in the intervention group was minimal, and the relationship between the rate of instructional interactions and reading growth was mixed. Implications for intervening with struggling students in the middle grades are discussed.

4.
Nat Commun ; 14(1): 6614, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857603

RESUMO

Shallow magmatic reservoirs that produce measurable volcanic surface deformation are often considered as discrete independent systems. However, petrological analyses of erupted products suggest that these may be the shallowest expression of extensive, heterogeneous magmatic systems that we show may be interconnected. We analyse time series of satellite-radar-measured displacements at Western Galápagos volcanoes from 2017 to 2022 and revisit historical displacements. We demonstrate that these volcanoes consistently experience correlated displacements during periods of heightened magma supply to the shallow crust. We rule out changes in static stress, shallow hydraulic connections, and data processing and analysis artefacts. We propose that episodic surges of magma into interconnected magmatic systems affect neighbouring volcanoes, simultaneously causing correlations in volcanic uplift and subsidence. While expected to occur globally, such processes are uniquely observable at the dense cluster of Western Galápagos volcanoes, thanks to the high rate of surface displacements and the wealth of geodetic measurements.

6.
mBio ; 14(2): e0026123, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36883814

RESUMO

In 1970, the Southern Corn Leaf Blight epidemic ravaged U.S. fields to great economic loss. The outbreak was caused by never-before-seen, supervirulent, Race T of the fungus Cochliobolus heterostrophus. The functional difference between Race T and O, the previously known, far less aggressive strain, is production of T-toxin, a host-selective polyketide. Supervirulence is associated with ~1 Mb of Race T-specific DNA; only a fraction encodes T-toxin biosynthetic genes (Tox1). Tox1 is genetically and physically complex, with unlinked loci (Tox1A, Tox1B) genetically inseparable from breakpoints of a Race O reciprocal translocation that generated hybrid Race T chromosomes. Previously, we identified 10 genes for T-toxin biosynthesis. Unfortunately, high-depth, short-read sequencing placed these genes on four small, unconnected scaffolds surrounded by repeated A+T rich sequence, concealing context. To sort out Tox1 topology and pinpoint the hypothetical Race O translocation breakpoints corresponding to Race T-specific insertions, we undertook PacBio long-read sequencing which revealed Tox1 gene arrangement and the breakpoints. Six Tox1A genes are arranged as three small islands in a Race T-specific sea (~634 kb) of repeats. Four Tox1B genes are linked, on a large loop of Race T-specific DNA (~210 kb). The race O breakpoints are short sequences of race O-specific DNA; corresponding positions in race T are large insertions of race T-specific, A+T rich DNA, often with similarity to transposable (predominantly Gypsy) elements. Nearby, are 'Voyager Starship' elements and DUF proteins. These elements may have facilitated Tox1 integration into progenitor Race O and promoted large scale recombination resulting in race T. IMPORTANCE In 1970 a corn disease epidemic ravaged fields in the United States to great economic loss. The outbreak was caused by a never-before seen, supervirulent strain of the fungal pathogen Cochliobolus heterostrophus. This was a plant disease epidemic, however, the current COVID-19 pandemic of humans is a stark reminder that novel, highly virulent, pathogens evolve with devastating consequences, no matter what the host-animal, plant, or other organism. Long read DNA sequencing technology allowed in depth structural comparisons between the sole, previously known, much less aggressive, version of the pathogen and the supervirulent version and revealed, in meticulous detail, the structure of the unique virulence-causing DNA. These data are foundational for future analysis of mechanisms of DNA acquisition from a foreign source.


Assuntos
Ascomicetos , COVID-19 , Micotoxinas , Toxinas Biológicas , Humanos , Virulência/genética , Proteínas Fúngicas/genética , Pandemias , Toxinas Biológicas/metabolismo , Doenças das Plantas/microbiologia
7.
J Genet ; 1012022.
Artigo em Inglês | MEDLINE | ID: mdl-36330790

RESUMO

Genome resequencing is an efficient strategy for associating mutant phenotypes with physical genomic loci (Baker 2009). A pilot study of this approach demonstrated that the Neurospora crassa genetic map was critical in narrowing the possible candidate mutations in a strain to a small number in a limited, defined region of the genome (McCluskey et al. 2011). In this study, we utilize a resequencing strategy to identify the mutations underlying the gluc-1 and gluc-2 genes in N. crassa.


Assuntos
Neurospora crassa , Neurospora , Neurospora crassa/genética , Projetos Piloto , Mutação , Análise de Sequência de DNA , Fenótipo , Neurospora/genética
8.
Metab Eng Commun ; 15: e00203, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065328

RESUMO

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

9.
Metab Eng Commun ; 15: e00206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36158112

RESUMO

In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger product-substrate pairing (1.6-fold increase). Then, deletion strains were constructed with excision of the PHA operon (ΔphaAZC-IID) resulting in a 2.2-fold increase in indigoidine titer over the optimized Cpf1-RBS construct at the end of the growth phase (∼6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 1.5-fold and 1.8-fold increase compared to the optimized Cpf1-RBS construct and the original strain, respectively. Overall, this study demonstrated that integration of omic data types is essential for understanding responses to complex metabolic engineering designs and directly quantified the effect of such modifications on central metabolism.

10.
Curr Res Microb Sci ; 3: 100117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909622

RESUMO

Using a legacy of genetic mutants of Neurospora crassa, paired with resequencing efforts through JGI, we have identified the gene responsible for the 'scumbo' mutant. This early morphological mutant was described as "Irregular flat, spreading growth with knobby protrusions and abnormal conidiation, but no free conidia. Mycelium usually appears yellowish rather than orange. Female fertile." (Perkins, Radford et al. 2000). Our further investigation has found new insights into the identity and associated functions of scumbo as a ceramide C9 methyltransferase, previously annotated as "similar to cyclopropane-fatty-acyl-phospholipidsynthase", encoded by the gene NCU07859. This enzyme performs a fungal-specific methyl modification of glycosyl-ceramides and has implications for membrane homeostasis and hyphal polarity in filamentous fungi.

11.
Anal Chem ; 94(15): 5909-5917, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35380435

RESUMO

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.


Assuntos
Medicamentos Biossimilares , COVID-19 , Cromatografia Líquida , Cromatografia de Fase Reversa/métodos , Glicoproteínas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Polissacarídeos/análise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
12.
Fetal Pediatr Pathol ; 41(5): 759-770, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34542007

RESUMO

BACKGROUND: CRMO is a sterile auto inflammatory bone disease that affects the pediatric population. Recently, single gene mutations in LPIN2, DIRA, and IL1RN have been reported in murine models of CRMO. MATERIALS AND METHODS: The medical records and histopathological slides of twelve patients were reviewed. RESULTS: The diagnosis was determined by multiple lesions, imaging, negative cultures, bone biopsy, and lack of antibiotic response. Biopsy showed early neutrophilic infiltrates, and older lesions showed lymphoplasmacytic infiltrates and fibrosis. Patients were treated with anti-inflammatory medication with some lesions completely resolving. CONCLUSION: Bone biopsy aids the diagnosis of CRMO in correlation with clinical presentation, imaging, and culture findings. Our findings indicate the kinetics of CRMO is not well defined and the fibrosis may be reached after months, in contrast to the previously reported several years. We hope that these genetic mutations can be further studied in human models to describe the genetics behind CRMO.


Assuntos
Osteomielite , Animais , Antibacterianos/uso terapêutico , Biópsia , Criança , Doença Crônica , Fibrose , Humanos , Camundongos , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Osteomielite/genética
13.
Pediatr Transplant ; 26(1): e14130, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34486806

RESUMO

BACKGROUND: Childhood cancer survivors who received a hematopoietic cell transplantation (HCT) are at increased risk for follicle-stimulating hormone (FSH) abnormalities, which may have a significant negative impact on bone health and body composition. This study's purpose was to examine FSH and body composition in HCT recipients, non-HCT recipients and healthy controls. METHODS: The study included HCT recipients (n = 24), non-HCT recipients (n = 309), and a control group of healthy siblings (n = 211) all aged 9-18 years. A fasting blood sample was collected to measure FSH. All participants underwent a dual X-ray absorptiometry scan to assess total and regional percent fat, lean mass (LM), fat mass (FM), bone mineral content (BMC), bone mineral density (BMD), and visceral adipose tissue (VAT) mass. RESULTS: FSH was significantly higher in HCT recipients compared to non-HCT recipients and healthy controls. HCT recipients had significantly lower total body weight, total LM, arm and leg LM, BMC and BMD compared to non-HCT recipients and healthy controls (p < .05). Non-HCT recipients had significantly higher total, trunk, android, gynoid, arm and leg FM compared to healthy controls. Also, healthy controls had significantly lower VAT mass compared to non-HCT recipients. CONCLUSIONS: This study's results show that HCT recipients have significant reductions in BMD, worse body composition, and abnormal FSH levels compared to non-HCT recipients and healthy controls.


Assuntos
Composição Corporal , Densidade Óssea , Hormônio Foliculoestimulante/sangue , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Adolescente , Biomarcadores/sangue , Estudos de Casos e Controles , Criança , Feminino , Humanos , Modelos Lineares , Masculino
14.
Appl Microbiol Biotechnol ; 106(1): 287-300, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34889980

RESUMO

Wild-type strains of Aspergillus oryzae develop yellow, yellow-green, green, or brown conidia. Previous reports suggested that the conidiation initiates with the biosynthesis of a yellow pigment YWA1 from acetyl-CoA by a polyketide synthase encoded by wA (AO090102000545). This is followed by the conversion to other pigment by a laccase encoded by yA (AO090011000755). Based on orthologous pathways in other Aspergilli, it is reasonable to hypothesize that in addition to yA, AO090102000546 encoding laccase and AO090005000332 encoding Ayg1-like hydrolase play a role in A. oryzae conidial pigment biosynthesis. However, the involvement of these two genes in conidial pigmentation remains unclear. In this study, we tested this hypothesis by assessing the conidial colors of both disruption and overexpression mutants to verify whether AO090102000546 and AO090005000332 were associated with the conidial pigmentation. Observation of single, double, and triple disruptants of these three genes suggested that conidial pigments were synthesized by two laccase genes, AO090011000755 and AO090102000546, whereas Ayg1-like hydrolase gene AO090005000332 was proven to have no obvious association with the synthesis. This was corroborated by observing the phenotype of each overexpression mutant. Interestingly, AO090005000332 overexpression mutant produced smoky yellow-green conidia, different from the wild-type strain. Thus, the AO090005000332-encoded protein is likely to maintain the enzymatic activity. However, the expression level was observed to be one-third of that of AO090102000546 and one-seventh of that of AO090011000755. Consequently, apparent lack of obvious contribution of AO090005000332 to conidial pigmentation could be attributed to its low expression level. Expression analysis indicated similar profiles in several wild-type strains. KEY POINTS: • Conidial pigment biosynthesis after YWA1 mainly involves two laccases in A. oryzae. • Ayg1-like hydrolase in A. oryzae is not obviously involved in conidial pigmentation. • Conidial color is deemed dependent on expression level of two laccases and hydrolase.


Assuntos
Aspergillus oryzae , Lacase , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Lacase/genética , Pigmentação/genética , Esporos Fúngicos/genética
15.
Toxins (Basel) ; 13(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34941729

RESUMO

Ochratoxin A (OTA) is a well-known mycotoxin with wide distribution in food and feed. Fungal genome sequencing has great utility for identifying secondary metabolites gene clusters for known and novel compounds. A comparative analysis of the OTA-biosynthetic cluster in A. steynii, A. westerdijkiae, A. niger, A. carbonarius, and P. nordicum has revealed a high synteny in OTA cluster organization in five structural genes (otaA, otaB, ota, otaR1, and otaD). Moreover, a recent detailed comparative genome analysis of Aspergilli OTA producers led to the identification of a cyclase gene, otaY, located in the OTA cluster between the otaA and otaB genes, encoding for a predicted protein with high similarity to SnoaLs domain. These proteins have been shown to catalyze ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. In the present study, we demonstrated an upregulation of the cyclase gene in A. carbonarius under OTA permissive conditions, consistent with the expression trends of the other OTA cluster genes and their role in OTA biosynthesis by complete gene deletion. Our results pointed out the involvement of a cyclase gene in OTA biosynthetic pathway for the first time. They represent a step forward in the understanding of the molecular basis of OTA biosynthesis in A. carbonarius.


Assuntos
Aspergillus/química , Aspergillus/genética , Vias Biossintéticas/genética , Genoma Fúngico , Ocratoxinas/biossíntese , Metabolismo Secundário/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Variação Genética , Genótipo
16.
ACS Synth Biol ; 10(11): 2968-2981, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34636549

RESUMO

Optimizing the metabolism of microbial cell factories for yields and titers is a critical step for economically viable production of bioproducts and biofuels. In this process, tuning the expression of individual enzymes to obtain the desired pathway flux is a challenging step, in which data from separate multiomics techniques must be integrated with existing biological knowledge to determine where changes should be made. Following a design-build-test-learn strategy, building on recent advances in Bayesian metabolic control analysis, we identify key enzymes in the oleaginous yeast Yarrowia lipolytica that correlate with the production of itaconate by integrating a metabolic model with multiomics measurements. To this extent, we quantify the uncertainty for a variety of key parameters, known as flux control coefficients (FCCs), needed to improve the bioproduction of target metabolites and statistically obtain key correlations between the measured enzymes and boundary flux. Based on the top five significant FCCs and five correlated enzymes, our results show phosphoglycerate mutase, acetyl-CoA synthetase (ACSm), carbonic anhydrase (HCO3E), pyrophosphatase (PPAm), and homoserine dehydrogenase (HSDxi) enzymes in rate-limiting reactions that can lead to increased itaconic acid production.


Assuntos
Yarrowia/metabolismo , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Teorema de Bayes , Biocombustíveis/microbiologia , Anidrases Carbônicas/metabolismo , Homosserina Desidrogenase/metabolismo , Engenharia Metabólica/métodos , Pirofosfatases/metabolismo
17.
MethodsX ; 8: 101485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434883

RESUMO

Hydrogen peroxide is commonly used as a sterilizing agent for medical devices and its use has recently been extended to N95 masks during PPE shortages as a result of the COVID-19 pandemic. The hydrogen peroxide remaining on the masks after sterilization could potentially pose a health hazard to the mask users. In the present study a colorimetric method was optimized for the determination of hydrogen peroxide on N95 masks following chemical sanitizations. The developed analytical method demonstrated an overall recovery of 98% ± 7%. The limit of detection ranged from 0.16 to 0.25 mg/mask, depending on the type of mask. The expanded measurement uncertainty was 13% (at a 95% confidence interval). The sanitization process itself introduced a significant variation in hydrogen peroxide load between masks. The ozone used in the sanitization process had no significant impact on analytical performance. Stamped and printed marks on the mask surfaces could induce biased readings. Hydrogen peroxide decomposes quickly on the mask surfaces so timing of analysis is an important factor in method standardization.•The validation data demonstrated that the in-house method is reliable and fit for the intended purpose, offering a sensitive, simple, rapid, and inexpensive method of residue monitoring.

18.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168079

RESUMO

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.


Assuntos
Proteínas F-Box/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Engenharia Genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Amilases/metabolismo , Carbono/farmacologia , Repressão Catabólica , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mutação/genética , Nitrogênio/metabolismo , Fenótipo , Sequenciamento Completo do Genoma , Xilose/metabolismo , beta-Frutofuranosidase/metabolismo
19.
Front Bioeng Biotechnol ; 9: 603832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898398

RESUMO

Biological engineering of microorganisms to produce value-added chemicals is a promising route to sustainable manufacturing. However, overproduction of metabolic intermediates at high titer, rate, and yield from inexpensive substrates is challenging in non-model systems where limited information is available regarding metabolic flux and its control in production conditions. Integrated multi-omic analyses of engineered strains offers an in-depth look at metabolites and proteins directly involved in growth and production of target and non-target bioproducts. Here we applied multi-omic analyses to overproduction of the polymer precursor 3-hydroxypropionic acid (3HP) in the filamentous fungus Aspergillus pseudoterreus. A synthetic pathway consisting of aspartate decarboxylase, beta-alanine pyruvate transaminase, and 3HP dehydrogenase was designed and built for A. pseudoterreus. Strains with single- and multi-copy integration events were isolated and multi-omics analysis consisting of intracellular and extracellular metabolomics and targeted and global proteomics was used to interrogate the strains in shake-flask and bioreactor conditions. Production of a variety of co-products (organic acids and glycerol) and oxidative degradation of 3HP were identified as metabolic pathways competing with 3HP production. Intracellular accumulation of nitrogen as 2,4-diaminobutanoate was identified as an off-target nitrogen sink that may also limit flux through the engineered 3HP pathway. Elimination of the high-expression oxidative 3HP degradation pathway by deletion of a putative malonate semialdehyde dehydrogenase improved the yield of 3HP by 3.4 × after 10 days in shake-flask culture. This is the first report of 3HP production in a filamentous fungus amenable to industrial scale biomanufacturing of organic acids at high titer and low pH.

20.
Methods Mol Biol ; 2307: 147-157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847988

RESUMO

Pathway localization by fluorophore or epitope tagging can be accomplished through a multi-staged DNA construct and confirmation process, to generate a series of successfully tagged protein targets. Prerequisite conditions for this process in Y. lipolytica are auxotrophic selection (leu2 or ura3), impaired non-homologous end joining by deletion or impairment of ku70, and plasmids or gene pieces for epitope-selection cassette construction. The general approach for gene tagging can work for C- or N-terminal tags. Gene overexpression from an episomal plasmid can be accomplished through transcript amplification and cloning. C-terminal tagging allows expression of a gene-GFP fusion to be regulated from the endogenous promoter. The epitope-selection cassette also includes a constitutive or highly expressed promoter driving the auxotrophic or other selectable marker gene such as one conferring antifungal or antibiotic resistance. Strains for pathway localization utilize overlap PCR, PEG-based transformation, and a fast DNA preparation for rapid colony screening. Successful transformants can be used for pathway localization and condition-specific response analysis.


Assuntos
Proteínas Fúngicas/genética , Transformação Genética , Yarrowia/crescimento & desenvolvimento , Reparo do DNA por Junção de Extremidades , Redes e Vias Metabólicas , Plasmídeos/genética , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...